

Dear Reader,

We are excited to present to you the report “Decoupled Applications and Composable Web Architectures,”
commissioned by Storyblok, a content management system (CMS) that empowers all teams to create
and scale modern content experiences across any digital channel.

Many of our customers love us for our visual editor, enabling their marketing teams to create and publish
content independently without having to talk to a product owner or create Jira tickets. Others for our
custom workflows and native collaboration capabilities that enable their teams to work together faster
on a single CMS. For us however, It all starts with composable architecture.

From our conception in 2017, we knew Storyblok had to be cloud-native, API-first, and composable. We
believe these are core qualities every modern tech stack must have in order to give developers the flexi-
bility to build great user experiences at scale while keeping up with fast-paced digital innovations.

In 2023, the need for flexibility, speed, and resilience in web development has become paramount.
Companies that can deliver standout content experiences faster, develop more efficiently and enjoy a
significant advantage over their peers. Those who don’t will face increased maintenance costs and slow
time-to-market as personalization and omnichannel strategies become increasingly complex.

We are proud to have been the only CMS recognized as the Customers’ Choice in Gartner’s Peer Insights
2023 report for web content management, validating our dedication to excellence. We are grateful to our
customers, partners, and community members who’ve consistently named us as a CMS category leader
on G2. However, the number we are most proud of is this: 582%.

That is the typical return on investment of a Storyblok customer over three years, as estimated by
Forrester Consulting whom Storyblok commissioned to estimate its potential impact on existing and
future customers using their Total Economic Impact™ (TEI) methodology.

One of the main factors contributing to this incredible return on investment is the efficiency and flexi-
bility provided to companies that build off our composable architecture. We’ve seen firsthand how our
customers like Oatly, T-Mobile, and Marc O’Polo have significantly improved their deployment speeds,
reduced development and maintenance costs, and boosted engagement with exceptional content expe-
riences built and scaled through headless architecture. Composable architecture doesn’t just transform
content and web applications. It drives business. Visit us at Storyblok.com to see for yourself.

As a company dedicated to empowering developers and technical practitioners with the transformative
power of composable architecture, we believe this report holds immense value for you.

We hope you enjoy it.

Sincerely,
Dominik Angerer
CEO Storyblok

https://www.storyblok.com

Stefan Baumgartner

Decoupled Applications
and Composable Web

Architectures
Building for Resilience, Flexibility,

and Immediacy

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-15144-7

[LSI]

Decoupled Applications and Composable Web Architectures
by Stefan Baumgartner

Copyright © 2023 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://oreilly.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Louise Corrigan
Development Editor: Jeff Bleiel
Production Editor: Kristen Brown
Copyeditor: Charles Roumeliotis

Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Kate Dullea

August 2023: First Edition

Revision History for the First Edition
2023-08-28: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Decoupled Appli‐
cations and Composable Web Architectures, the cover image, and related trade dress
are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Storyblok. See our state‐
ment of editorial independence.

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

1. Composable Web Architectures. 1
The Four Aspects of a Web Application 2
Content Management with Headless and

Decentralized Systems 5
Decoupling the Application Layer Through

Single-Purpose Services 9
Frontend Flexibility: Pull Versus Push Deployment 12
Conclusion 17

2. Developing and Operating Decoupled Applications. 19
Technology Lock-In, Technology Choices, and Rewrites 19
Rethinking Backend for Frontend 22
Serverless as a Rendering Layer 25
Frontend Composability 27
Third-Party Services 30
Conclusion 33

iii

CHAPTER 1

Composable Web Architectures

The rise of the cloud has changed how we develop applications
tremendously. While many organizations have slowly but steadily
moved toward microservices, the traditional website or web applica‐
tion still relies on monolithic software being squeezed into contain‐
ers in order to meet cloud native goals (such as high availability,
high performance, resilience, scalability, and redundancy). But what
works in cloud native applications can also work for websites and
apps by embracing composable web architectures.

Composable web architecture emphasizes modularization, flexibil‐
ity, and reusability of components. In this architecture, the various
parts of the application (such as the frontend UI components, back‐
end APIs, and data sources) are broken down into smaller, inde‐
pendent pieces that can be easily combined or replaced as needed.

The idea behind composable web architectures is to create a system
that is flexible and adaptable to changing requirements or technol‐
ogy trends. Instead of building a monolithic application that is
difficult to change or update, developers can focus on building
smaller, more focused components that can be easily swapped out
or updated as needed. This allows development teams to reduce the
time to release significantly, as the way is paved to easily include and
integrate new services.

One of the key benefits of composable web architectures is that
they allow for greater flexibility in the technology stack, and reduce
the chance of vendor lock-in. Because the various components
of the application are independent, it is possible to use different

1

1 For more radical, almost unapologetic takes on composable web architectures, check
out Jamstack and MACH.

programming languages, frameworks, or tools for different parts of
the application.

In this chapter, we will look at the benefits and trade-offs of compos‐
able web applications at large. We do so by dissecting the traditional
monolith, and composing the remaining features in the frontend. In
doing so, we discuss the trade-offs of “rolling your own” as opposed
to using established vendors, and how integration with existing sys‐
tems can work. After reading through this chapter, you will be able
to migrate from your monolith to a composable web architecture,
no matter what your original setup looked like.1

The Four Aspects of a Web Application
Web applications can be separated into four different aspects or
layers. Each aspect has different goals and requirements, as well
as different tools to get the job done. In general, we identify the
layers as:

Application
The application layer includes specialized backend services that
deal with concrete tasks like data processing and application
state. This includes things like dynamic search, filters for prod‐
uct catalogs, and user management. Its main stakeholders are
development teams.

Frontend
The frontend layer is the direct interface to the users. It
is responsible for delivering accessible and semantic HTML,
showing fantastic designs using CSS, and creating engaging,
dynamic user experiences with the addition of client-side Java‐
Script. Its main stakeholders are frontend and design teams.

Content management
The content management layer deals with the organization of
content, the creation of data structures, and convenient ways
of editing said content. Its main goals are ease of use and
flexibility in structure. The main stakeholders behind content
management are e-marketing teams and content editors.

2 | Chapter 1: Composable Web Architectures

Runtime
The runtime layer deals with deployment or hosting of all
aspects of a web application. Its main goal is to find the right
environment for the technology choices made by the other
teams to ensure the availability, stability, and security of the
system. Its main stakeholders are operation teams.

Sometimes organizations form roles, if not entire teams, with those
exact four names, in order to take care of different parts of their
product.

Usually, teams put in great effort to pick the right technology that
suits their needs, which might be familiarity with a programming
language, speed of development, ease of deployment, or ease of
use. Many factors have to be taken into account, and monolithic
architectures usually don’t provide the silver bullet for all aspects. In
fact, monoliths that work well in one aspect might have a negative
impact on another.

Let’s look at an example where a company has chosen to use
WordPress, a traditional PHP-based blogging system and content
management layer, as the main technology for their website. Let’s
assume that WordPress was mainly chosen because the e-marketing
team loves the editor and flexibility in structuring content, or they
are familiar with the SEO tools that come with the rich WordPress
plug-in ecosystem. How does this decision affect all the other layers?

The application team now needs to write PHP to create new services.
Maybe they can hook on existing functionality from WordPress
already, or they find a plug-in that does the right things for them.
But if the team can’t find existing solutions, they need to deal with
PHP as a programming language, even if this might not be their
favorite tool or they lack experience in it. Even if they are fluent in
PHP and it is their main programming language, they would have to
understand WordPress internals and APIs to meaningfully get work
done. This is not only limiting, but also means that the software
written for this system is inevitably locked in with WordPress.

The frontend team is also stuck with the way WordPress produces
HTML. WordPress lacks a templating engine out of the box, and
developers need to be familiar with WordPress internals as well.
Usually this includes lots of conditionals, branches, and partials that
can be very frustrating. After all, WordPress has been designed as
a blog system, even if it is capable of so much more. The main

The Four Aspects of a Web Application | 3

job of a frontend team is to deliver accessible and semantic HTML.
If the main way to produce HTML is so tightly coupled to the
e-marketing team’s choice of platform, they need to be experts of
the platform, not of their craft. This again can be limiting, which
ultimately results in broken or subpar applications.

Last, but not least, the runtime or operations team need to provide
the right infrastructure and servers to run WordPress. This includes
PHP, MySQL, Linux, and Apache or NGINX. While WordPress and
its choice of technologies may be easy for small-scale websites, it
may be really troublesome in the enterprise sector, where security,
availability, and stability are the main driving factors for reliable
hosting and operations of your applications.

For example, if we wanted to host WordPress in AWS, things could
get very complicated. We would need to make sure that we use
off-the-shelf service, follow separation of concerns, replicate data,
scale automatically based on traffic, and distribute requests on sev‐
eral availability zones. The details would go beyond the scope of
this report, but check out the AWS documentation on WordPress
hosting for more details.

Of course, there are situations that require less setup than this
WordPress example. But because requirements for any project
change, your setup will likely need to adapt to prevent it from
becoming complicated. This is especially true if you need a resilient
and secure system.

As you can see, the simple decision of one stakeholder—in this case
online marketing and their choice of content management system
(CMS)—has a fundamental impact on all other aspects, and teams
might not be able to fulfill their goals because of that technology
choice. Similarly, how would other aspects be influenced if you
chose a technology based on its runtime capabilities, or its frontend
capabilities? What if the application and runtime team decide to go
for .NET and Windows machines in the cloud only, and none of
the available software matches the needs of the frontend team or
content management team? Different trade-offs would have been
made, but the trade-offs are there.

4 | Chapter 1: Composable Web Architectures

https://oreil.ly/lVaRh
https://oreil.ly/lVaRh

Note that those trade-offs might not be visible at first. Some technol‐
ogy choices might be good at first, but then prove to be unable to
scale once your organizations grow or different stakeholders come
into play. For example, a WordPress blog might be the right setup
for a blog (with a team of editors and a single PHP developer) that
runs on a cheap, WordPress-focused hosting solution. But if global
availability becomes important, performance might be an issue. Or,
the frontend might not scale with the needs of the newly attached
UX team.

This is where composable web architectures come into play. The
goal of composable web architectures is to develop decoupled appli‐
cations, where each aspect is treated independently from others,
making sure teams can make the right decisions on choosing the
best technology for their case. In doing so, organizations are able
to compose their applications from various technologies as needed,
and always pick the best tool for the job.

Composable web architectures are created by splitting up tightly
coupled connections through the introduction of JSON-based APIs.
In the following sections of this chapter, we are going to the dissect
the monolith based on the four aspects. We will see how decoupling
applications benefit each aspect, and how this can lead to highly
composable architectures.

Content Management with Headless and
Decentralized Systems
Traditional CMSs have evolved into platforms, handling actual con‐
tent management (including creation, editing, and publishing), as
well as integration with additional services through plug-ins (appli‐
cations) and rendering of user-facing frontend code.

Figure 1-1 shows a traditional, monolithic approach to web appli‐
cations. It presents a single CMS handling all tasks, including the
application layer, the frontend using a rendering system, and the
administration of the content:

Content Management with Headless and Decentralized Systems | 5

• The circles Administration and Frontend show entry points to•
the main content area.

• The boxes Content creation/modification/publishing and Applica‐•
tion indicate processes that deal with reading or writing content
from the main storage. So does the Rendering box.

• The cylinders show storage capabilities: the main content data‐•
base, as well as an additional database for extra application
data. In some systems, all storage capabilities reside in the same
database.

Figure 1-1. The monolith

As you can see, the main content storage is heavily connected to
many processes. The obvious connections are to reading and writing
through actual content management, as well as the rendering pro‐
cess toward the frontend. This is what a traditional CMS is doing:
administration on one side, presentation on the other. The strong
connection between all those points dictates all decisions for all
other aspects. Furthermore, the data is structured to benefit content
management, not necessarily the other processes attached to it.

6 | Chapter 1: Composable Web Architectures

We will now take a series of steps that will decouple the traditional
monolith into a set of smaller, reusable, single-purpose services
that can be composed in the frontend. The first step in decoupling
applications is to detach the content management part from the
rest of the application. Figure 1-2 shows the CMS operating as its
own entity, with enclosed data storage, and tailored processes for
content editing, creation, and publishing. Instead of every process
going directly to the content storage, the application backend talks
via APIs to the headless CMS.

Figure 1-2. Decoupling the CMS part

To connect the application backend with the CMS, the CMS exposes
a set of APIs, usually in the form of JSON-based HTTP endpoints.
We call CMSs that use JSON APIs as their main output headless
content management systems.

In a headless CMS architecture, the CMS is separated from the
frontend website or application. The CMS only provides an API
for accessing the content, while the website or application retrieves
content from the API and renders it dynamically. You could say that
the JSON API becomes the frontend of the CMS, nothing more.

Content Management with Headless and Decentralized Systems | 7

For the main stakeholders of a CMS, the content editors, there are
usually little to no change in how they work or maintain content.
Even features like visual editing, which were a key argument for
sticking to monolith CMS solutions, are now well supported in
headless CMS, and arguably integrate even better.

Deciding on a headless CMS influences all other aspects. In the
frontend, by separating the content from the presentation layer, a
headless CMS allows developers more freedom of choice in picking
their UI technology. This can be a JavaScript client-side framework
like React, or a PHP-based application framework like Laravel, or
something entirely different. UI rewrites become less of a hassle,
and creating new elements on a website is entirely focused on the
frontend. UI is also not only restricted to the web. The same APIs
can be consumed to display content in a native app on iOS or
Android.

The same benefits apply on the application side. A search service
or product catalog generation can rely on the same APIs and can
consume content without ever knowing where it comes from. This
allows organizations to, for example, search services without switch‐
ing the CMS underneath, or use the same search service to index
multiple content sources.

It gets really interesting when we look at the hosting and operations
aspect of introducing a headless CMS. Where a monolith has many
points of access that all need different visibility, including a public-
facing HTML output, the headless CMS only has two: the adminis‐
tration interface and the API endpoints. Access to the API can be
given with fine-grained control, and the administration interface
can be fully occluded to internal systems. This allows deployment
of a headless CMS to be much more isolated; it can even run in
an entirely different region or cloud provider altogether. With the
introduction of a good cache layer on the API end of things, the
headless CMS even becomes a satellite of the production system.
The availability of the CMS does not dictate the availability of your
website anymore.

When taking the API as the main provider for content of any kind,
we gain the ability to decentralize services from the main appli‐
cation. In the context of composable web architectures, headless
and decentralized systems provide the main point for composition.

8 | Chapter 1: Composable Web Architectures

https://oreil.ly/sEQ7-

Through their flexible APIs, we as website and web application
providers can plug in functionality as needed.

Decoupling the Application Layer Through
Single-Purpose Services
Next, let’s decouple the application layer. The application layer con‐
sists of everything beyond the display of managed content, services
that are not necessarily part of the monolithic content platform. Any
additional data source, data aggregation, user state, or just simple
extra functionality belongs to the application layer. In a system like
WordPress, this is the plug-in ecosystem, where you can enhance
the core functionality.

Figure 1-3 shows how we can decouple the application layer from
the frontend layer. The frontend now talks to the APIs from the
CMS as well as the single-purpose services.

Figure 1-3. A decoupled application layer

Decoupling the Application Layer Through Single-Purpose Services | 9

Instead of deploying a single-purpose application backend, the ren‐
dering and interaction of content becomes its own entity, talking
to APIs provided by single-purpose services. Single-purpose services
are designed to perform a single function or task within an applica‐
tion or system. The goal of single-purpose services is that they are
self-contained, work in isolation, and have little to no dependency
on other services.

The architectural properties of single-purpose services are typically
designed to maximize efficiency and performance for their spe‐
cific function or task. Some key architectural properties of single-
purpose services include:

Modularity
Each service performs a specific function or task. This makes
it easier to maintain and update the service, as changes to one
module do not affect other modules.

Scalability
Single-purpose services can handle increases in demand
without experiencing performance issues. The service is dis‐
tributed across multiple servers or instances, allowing it to han‐
dle a high volume of requests.

Resilience
Single-purpose services can recover from failures or errors
without affecting the overall system. Redundant servers or
instances can take over in the event of a failure.

Lightweight
Single-purpose services have minimal dependencies and a small
footprint. This allows them to run efficiently and quickly,
without consuming excessive resources or slowing down other
services.

API-based
Single-purpose services have a well-defined interface for access‐
ing the service. This allows for easy integration with other
services.

10 | Chapter 1: Composable Web Architectures

These architectural properties compare with the CAP
theorem. CAP stands for consistency, availability, and
partition tolerance. The theorem says that you can only
pick two of the three CAP guarantees for distributed
data access. Microsoft has an excellent article on CAP
in the context of microservices.

Designing the application aspect as a group of single-purpose serv‐
ices allows the main stakeholder of that aspect—the developers—to
work in their programming language of choice with the frameworks
and libraries that they need. They can leverage all their knowledge
and quickly create new features. They can also mix and match
technologies based on their needs, and become fully independent of
the technology choices of others: the microservice dream.

Frontend developers are not affected too much, as they consume
“just” another API. Also, content editors don’t really see the impact
of the change, which is just another indicator that those things
maybe don’t belong together.

It has a huge impact on the hosting and operations part. What
becomes visible when looking at Figure 1-3 is that not all single-
purpose services require a connection to the CMS at all. This further
reduces dependencies and thus increases resilience.

Be aware that when decoupling applications, there’s
room for fragmentation and knowledge isolation.
More APIs also mean more contracts to take care of.

Depending on a single-purpose service’s functionality, it can also be
implemented as serverless functions. Take a contact form for exam‐
ple: retrieving the contact payload and putting it into a database/
sending an email can be handled with a few lines of backend code.
Function invocations can be paid per use, for the trade-off of higher
costs per invocation and potentially longer startup times. For a
contact form, which does not expect as much traffic as the rest of
your application, this can reduce operation costs significantly.

Single-purpose services can be attached through third-party ven‐
dors. For example, both content management and search are
traditionally seen as a unit, with the content stored in a CMS
being scanned through the search indexer, but with single-purpose

Decoupling the Application Layer Through Single-Purpose Services | 11

https://oreil.ly/r2cIx

services they can be split up. A SaaS CMS solution can store and
provide content through APIs. Changes in content send events to a
search SaaS solution; this populates the search index, which is then
consumed by an API on the website itself, as seen in Figure 1-4.

Figure 1-4. A headless content management system being consumed by
the website through its APIs

The population of the index can happen independently from con‐
tent consumption or search on the website. If the connection
between the CMS and search is broken or defective, the website’s
connection can still function.

Frontend Flexibility: Pull Versus
Push Deployment
The last remaining piece of our original monolithic architecture
is the frontend. This is the place where content is assembled, and
HTML is finally delivered. With the frontend rendering completely
decoupled from the rest, we suddenly gain flexibility in how we
render content, again choosing the best tools for the job.

When a system delivers content to a client, it needs to go through a
few steps and components:

Routing
Content is accessed through URLs. A router parses query
parameters and maps URLs to an internal representation. This
will be used to fetch the right content and resources to produce
the final result.

12 | Chapter 1: Composable Web Architectures

Rendering
The render component of a web application takes the content
associated with a URL and produces a machine-readable for‐
mat. This can be HTML (traditional rendering), but also JSON
(for the use of client-side frameworks), XML, or any other data
exchange format. The goal is to get to a representation that
can be consumed by a browser or by the application running
inside a browser. Templating or client-side frameworks help
developers reuse rendering components.

Content retrieval
This step includes the retrieval of the actual content that will be
rendered and subsequently delivered. This can include reading
JSON data from disk or querying a database. We call the associ‐
ated component data storage. Whatever the interface is, we get
our data from there.

Those three components are inevitable when delivering web experi‐
ences. What’s different is how they are arranged to produce results.
Traditionally, web applications followed a so-called pull architecture,
as shown in Figure 1-5. The critical path of a client’s request goes
through the entire stack down to a query fetching the necessary
results from a database. Every line in Figure 1-5 has failure potential,
causing the entire request to fail. Caches and resilience layers are
mandatory.

Figure 1-5. The traditional pull architecture

Pull architectures create fresh results for every request by going
through every component. The benefits include contents that are
never stale, the ability to include state, and the option for dynamic
content per request. On the other hand, pull architectures are prone
to performance problems due to the responsibilities of each request,
and every connection between components includes the potential
for a failed request, such as programming errors, networking errors,
or infrastructure problems. Pull architectures need compute units
and everything compute units imply.

Frontend Flexibility: Pull Versus Push Deployment | 13

2 See Modern Web Development on the JAMstack by Mathias Bilman and Phil Hawks‐
worth (O’Reilly, 2019).

In recent years, push architectures, such as Jamstack, have become
more prominent and popular, as shown in Figure 1-6. Instead of
going through the entire stack with every request, push architec‐
tures map the entire available content up front, render the respec‐
tive representations in static HTML files, and deploy the rendered
results on static file storage. The critical path is reduced to a request
that fetches HTML files from said storage.

Figure 1-6. Push architectures such as Jamstack allow all content to be
prerendered and deployed as static HTML files to simple file storage

The routing unit’s only task is to map URLs to the right content,
reducing the critical path to a minimum. Push architectures are
easily deployed, cost-effective, and stable. The content is already
finished, and there are no issues with problematic queries or pro‐
gramming errors. Push architectures need to know all eventualities
up front, which means they lack significant support for dynamic
content. Approaches like Jamstack2 move dynamic, asynchronous
content to the client side, which is a reasonable solution, but comes
with different trade-offs, like a flash of unstyled content in client-
side rendering, increased programming effort on the client side,
unpredictable execution environments (browsers), and problems
when dealing with sensitive content.

One key aspect of hosting websites on static storage
and distributing them globally via a content delivery
network (CDN) is that this approach is really cheap in
comparison to other servers. Update costs are moved
to a build step, and global distribution happens in
batches.

14 | Chapter 1: Composable Web Architectures

https://www.oreilly.com/library/view/modern-web-development/9781492058571/

However, because composable web architectures rely on headless
systems, they allow you to pick the right approach for each use
case. With push architectures you prerender the majority of static
content up front, and pull architectures use additional data on the
client side or render pages with dynamic content through serverless
functions. Figure 1-7 illustrates how composable web architectures
can consume APIs through various means. Headless systems can
provide content for pregenerated pages, as well as dynamically cre‐
ated site and client-side rendered content.

Figure 1-7. Composable web architectures take the best of all
approaches

A composable web architecture introduces different layers of
resilience:

• Static content always works.•
• Additional dynamic content fetched on the client side can be•

brittle and is allowed to fail.
• Content rendered via serverless functions can be dynamic, can•

include sensitive information, and can produce proper errors if
things go wrong.

The underlying systems stay the same, stay self-contained, and fol‐
low a single purpose. Finally, we have arrived at the point where our
application has become truly composable. Depending on our choice
of technology or vendor, we are able to choose the best way possible
for getting data to the frontend.

Frontend Flexibility: Pull Versus Push Deployment | 15

Figure 1-8 shows the final transformation. Here, we split up routing
from the actual rendering and content retrieval, creating more flexi‐
bility in how we deliver content to our clients.

Figure 1-8. The last decoupling step

This allows us to mix and match different rendering approaches best
suited to our needs. This can be static generation of web pages with
little to no interactivity, server-rendered pages with dynamic data, or
even legacy monoliths that are still attached to the new system. Also
note that in Figure 1-8 we see that the routing layer also has direct
access to the single-purpose services as well, which means that some
of the content updates can happen entirely client side.

16 | Chapter 1: Composable Web Architectures

Since composable web architectures deal with flexibility of technol‐
ogy choices and the possibility to change parts of an application
quickly, choosing a UI framework can be quite an commitment.
With different deployment models (server-side rendered, client-side
rendered, statically generated), we create options: for example, dur‐
ing the migration to a new design and maybe frontend technology,
the old website can be statically generated and routed as a fallback,
while the new content and design takes shape and replaces the
old one.

Conclusion
Every step toward composable web architectures shown in this
chapter gears toward one common goal: independence and compo‐
sition. Instead of having everything in one rigid, hard-to-maintain
monolith, developers can pick their favorite technology and develop
new features entirely independent from all other pieces of their sys‐
tem. This allows developers to ship new features fast, even dropping
the backend implementation in favor of a new third-party service
that might just do what they need. You compose your website from
different bits and pieces, creating a single representation.

This also allows organizations to move away from certain features
quickly. If a tool or service doesn’t seem to cut it, drop it in favor
of a new or better one. Technology lock-in becomes a thing of the
past; so does the big bang rewrite. The frontend layer just becomes
another piece of the puzzle, and UI rewrites don’t sacrifice the
architecture underneath.

In the following chapter we look at the implementation of composa‐
ble web architectures in detail, and deal with the operational impact
of such architectures.

Conclusion | 17

CHAPTER 2

Developing and Operating
Decoupled Applications

Composable web architectures assemble modular services into a full
application. Integrating new services into a web user interface is
easy, but how do we make sure that the user experience is coherent,
robust, and consistent?

This puts a lot of responsibility on the frontend developers, who are
now in control of assembling a web application from various bits
and pieces. They need to make decisions on how to talk to APIs,
what rules to implement to show state in the user interface, and how
to deal with erroneous responses or worse: unavailable services.

In this chapter, we look at different aspects of developing and oper‐
ating decoupled applications. We see development technologies that
support composition and decrease fragmentation, and answer the
most burning questions on operational costs.

Technology Lock-In, Technology Choices,
and Rewrites
Figure 2-1 shows a sample application built on a composable web
architecture. This example is derived from real-world applications
such as the Dynatrace web portal. The website features five major
outlets that are based on different technologies, with various teams
working on them and different stakeholders deciding on content,
features, and UX.

19

https://dynatrace.com

It includes the main website, using a custom rendering service con‐
nected to a headless CMS, a traditional blog monolith, a documen‐
tation website that is generated with a static site generator, and the
careers portal, which is a Next.js app getting data from a recruitment
portal. Next to it is a global search service that gets data from
various sources.

Figure 2-1. A web portal for a company website

The different outlets are:

1. The main website served under the root /. This outlet contains1.
the main product and company information, and is highly opti‐
mized SEO content created by the online marketing team. They
use dynamic server-side rendering written in PHP, with content
coming as JSON via a headless CMS.

2. The company’s blog is served under /blog/ and is based on2.
monolithic blogging software that has been with the company
for a decade. The content is maintained by the e-marketing
team but contributed by the entire company. Allowing every
person in the company to write articles and keeping every con‐
tributor’s author biography are key features of this installation.

20 | Chapter 2: Developing and Operating Decoupled Applications

3. The job portal under /careers/ is a Node.js-based Next.js3.
application. Next.js is a React framework that allows for
dynamic websites that are rendered on the server or on the
client, or statically prerendered based on the page’s demands.
Next.js is connected to a recruitment portal that serves avail‐
able job postings via a JSON API, and allows people to apply
through a different set of APIs, including the upload of CVs as
PDFs. Next.js is configured such that the available job postings
are generated statically, while the overview (which features a
dynamic filtering process) and application process (which needs
to give feedback based on the state of the application) are ren‐
dered on the server with client-side interactions.

4. The product’s documentation is written by technical writers4.
within the the company’s engineering department. They prefer
to write their documentation via Markdown, and render a set of
interlinked static web pages. It is served under /docs/.

5. The last piece of the website is the search, which is provided5.
by a third-party search service. A background process written
by the operations team sends JSON input from the main outlet,
the job portal, and the documentation to the search service for
indexing on a daily basis. The search service also features JSON
APIs to query for results. Since the blogging monolith does not
have a JSON output that can be used to index the blog via
the search service, the developers created a serverless function
to combine both the search service’s JSON output as well as
the search results from the blog in the form of a Backend for
Frontend pattern. The search backend for frontend is reachable
under /search/ and either serves JSON output for dynamic
results over a search field across all websites, or renders HTML
if accessed directly.

Each technology has been carefully chosen by development teams
to produce the best results for their use case and their users. They
use the right tool for the job. Also, every technology can be replaced
with others should requirements change, without influencing the
adjacent outlets, effectively avoiding technology lock-in. Also, ele‐
ments on the website, like a search field, can be used across the
entire web application, independent from the actual tech stack
underneath.

Technology Lock-In, Technology Choices, and Rewrites | 21

https://nextjs.org

To develop a decoupled application like this without risking frag‐
mentation requires a lot of attention to detail. Let’s dig in.

Rethinking Backend for Frontend
We see that the search service has been made robust and inde‐
pendent of technologies through the integration of a Backend for
Frontend pattern. The term Backend for Frontend (BFF) originally
describes a pattern where organizations create tailored APIs for
various frontends, such as a mobile application, administration UI,
or the website/web application itself. It originated in the early 2010s
at Soundcloud, and has been prominently described by Sam New‐
man in his series on microservices as well as Lukasz Plotnicki for
Thoughtworks. Figure 2-2 shows the original design for a BFF.

Figure 2-2. The traditional use case and approach for BFF, creating
tailored API layers for different user interfaces

While BFFs have been traditionally meant to create tailored APIs
for various outputs, they can also help in the migration process
from a monolith to microservices. BFFs can be envisioned as a layer
and contract for UI developers to consume stable APIs and to have
consistent and controlled access to services underneath. With BFFs
knowing how data should be consumed, they can also include tail‐
ored caching to minimize database access and unnecessary network
traffic.

22 | Chapter 2: Developing and Operating Decoupled Applications

https://oreil.ly/g-1QI
https://oreil.ly/kS8dW
https://oreil.ly/kS8dW
https://oreil.ly/EMZJy

Figure 2-3 shows how a BFF consumes APIs from the old monolith
as well as from newer services that have been attached to the API
layer. Instead of every call going to the monolith, the BFF integrates
different services into a single API layer.

Figure 2-3. The BFF as a migration step to microservices

In the context of composable web architectures, BFFs reduce and
tailor API surface for the single-purpose services as shown in
Figure 2-4. Single-purpose services can originate from various ven‐
dors and thus be decentralized. They might work with different
authentication methods or might expose too many endpoints for the
purpose of the application. A BFF can tailor responses and offer
normalized error handling, caching, and failovers for both first- and
third-party services.

When considering resilience, using a BFF can involve trade-offs.
A well-designed BFF can boost the resilience and performance of
attached single-purpose services by delivering cached responses,
which reduces traffic and possibly costs when using third-party SaaS
products. In addition to caching responses, BFFs can also ensure
that the frontend receives a normalized error response with the cor‐
responding status codes in the case of failing requests. This allows
developers to rely on global error handling and error boundaries to
detect when something goes wrong, or to temporarily deactivate a
feature such as search if backend calls fail.

Rethinking Backend for Frontend | 23

Figure 2-4. The BFF as an integration step for composable web
architectures

However, BFFs can become a single point of failure, especially when
deployed as a separate service. To mitigate this problem, BFFs can
be implemented as small, self-contained serverless functions using
services like AWS Lambda or Cloudflare Workers. Splitting the
responsibility into a set of independent functions enables BFFs to
fail more gracefully by handling only single functions or even single
invocations, rather than overwhelming the entire backend service
with requests and potentially bringing down the entire architecture.

Another approach to tailoring responses is GraphQL. GraphQL is
a query language that enables tailored responses in user interfaces,
with the trade-off of potentially longer response times compared to
regular API calls.

GraphQL promises tailored requests and responses
for every website, but has received some criticism in
recent years for the extra effort organizations need to
exert to ensure performance and secure access, avoid
DDOS attacks, and produce reliable results. Make sure
GraphQL is the right solution for your problem and
organization.

24 | Chapter 2: Developing and Operating Decoupled Applications

https://oreil.ly/jElUu
https://oreil.ly/MTcze
https://oreil.ly/SQKGi

A pattern that has emerged with GraphQL APIs is the use of a
composition layer called GraphQL Mesh, which allows developers
to plug in different first- and third-party GraphQL and REST APIs,
making them available with a single query backend, as shown in
Figure 2-5.

Figure 2-5. GraphQL Mesh allows the connection of different sources
with different protocols and provides a unified layer that is accessible
via GraphQL

BFFs and mesh layers also help with avoiding vendor lock-in. They
serve as the mediator between connected services and your applica‐
tion. Should you decide to change one service for the other, you only
need to adapt the BFF layer.

A mesh layer alone won’t help you with vendor lock-
in. There are mesh layer offerings as a service, which
very much tie you to a specific vendor for your
GraphQL data.

Serverless as a Rendering Layer
Decoupling applications involves separating the frontend from the
backend. This separation causes a clear cut between rendering
HTML, which is done by many clients, and serving data, done by
fewer servers. Decoupling can go as far as rendering entirely in the
browser, with no server-side rendering step at all, which moves a lot
of responsibility to the frontend development teams.

Serverless as a Rendering Layer | 25

https://oreil.ly/lnqCH

But this shift in responsibility is what makes this separation desir‐
able. Frontend development has an entirely different operational
complexity than backend development. Where frontend develop‐
ers need to care about browser inconsistencies, user interactions,
and UI state, backend developers care a lot about service availabil‐
ity, CPU usage, memory limits, and transaction times. Rendering
proper HTML is one concern that a backend developer happily gets
off their list, especially with the frontend becoming so complex in
recent years.

However, assembling HTML on the client is not a silver bullet,
as it can have severe impact on aspects such as performance. The
Netlify blog has listed seven different rendering approaches, all with
their benefits and caveats. So there is a need for rendering on the
server side. But we still want to keep the benefits of shifting more
responsibilities to frontend developers.

A solution for this problem that has been heavily adopted in recent
years is serverless. Serverless functions allow developers to execute
small, stateless tasks that can be wired to an HTTP interface, taking
care of request/response patterns. Those tasks include the handling
of contact forms, payments, search, etc. They can be written fully
in JavaScript, which frontend developers are familiar with. Also,
PHP scripts can be executed well in serverless environments, as
PHP shares some of the traits of serverless.

While serverless rendering is associated with long
startup and execution times and potentially high
costs, modern serverless platforms like Cloudflare
Workers or Deno Deploy—commonly referred to as
edge functions—execute rendering steps in mere milli‐
seconds and stay affordable. In 2023, nobody needs to
wait for serverless.

From an operations point of view, serverless functions also get
rid of a lot of the concerns you usually associate with traditional
application servers. Most serverless offerings treat each invocation
in isolation, meaning that a request gets a very small dimensioned
VM instance that works on a particular task and no other. Only if
the task is done is the same instance allowed to work on another
task. Concurrent requests are solved by spinning up multiple instan‐
ces, as seen in Figure 2-6. Concurrency happens through multiple

26 | Chapter 2: Developing and Operating Decoupled Applications

https://oreil.ly/QQDGW

instances, effectively isolating each process from noisy neighbors or
potential panic.

Figure 2-6. Serverless executions are run in isolation

The big benefit from this setup is that if an error occurs, and the
function execution breaks the process, all other processes still run
and produce results. With this, software becomes much more resil‐
ient. Serverless offerings allow for thousands of parallel instances
per function, getting rid of most scaling issues. Last, but not least,
serverless offerings only charge for what you use, which can have a
tremendous benefit on your operational costs.

With serverless as a rendering layer and existing frameworks, front‐
end developers can write minimal backend functionality in pro‐
gramming languages they are familiar with, without dealing with
concerns that usually come along when operating servers.

It was Chris Coyier from CSS Tricks who realized that with the
availability of serverless, frontend developers have become full stack
developers now, taking care (at least in part) of server-side tasks.

Frontend Composability
When we integrate services like search or elements like navigation
and footers to a decoupled application, we need to consider how we
make this element available on all pages, no matter how they have
been created. There are various ways to compose user interfaces,
and as with any software architecture, one size does not fit all organ‐
izations. The appropriate way to assemble UI and thus compose
largely depends on how teams are structured, how responsibilities
are distributed, and what technology choices have been made.

Frontend composition has a strong relationship with micro-
frontends, an architectural approach that involves breaking down

Frontend Composability | 27

https://oreil.ly/WZjYU
https://oreil.ly/WZjYU

the frontend of an application into smaller, independent frontends,
each with its own UI components and probably routing logic.
The goal is to deploy frontends independently, allowing teams to
release features end-to-end, and also to include several technologies
from different teams on a single page so they can decide on their
stack independently. Luca Mezzalira describes several approaches
in his book Building Micro-Frontends (O’Reilly, 2021), and Michael
Geers explains the concept on the eponymous website https://micro-
frontends.org. Figure 2-7 shows how a UI is composed through
micro-frontends. In the figure, the product display, the checkout,
and the related products screen are all independent of each other.
All features are produced by different teams.

Figure 2-7. A micro-frontend example from Michael Geers’s
micro-frontends.org website

Micro-frontends mostly deal with organizational setups and the
architecture around them. Not all the principles and patterns
described in this architecture are necessary for the composition of
user interfaces.

The overall goal of frontend composability is to assemble isolated,
self-contained elements of user interfaces that have a strong connec‐
tion to the underlying service. For example, a search widget should
be a drop-in element that takes care of everything related to search,
including communicating with the right APIs and producing the

28 | Chapter 2: Developing and Operating Decoupled Applications

https://oreil.ly/j1VmT
https://micro-frontends.org
https://micro-frontends.org

correct error messages. Ideally, this element should be independent
of other changes in the user interface and able to be reused in other
applications.

A great way to achieve composability is through component-based
UI frameworks. In recent years, all popular UI frameworks such as
React, Angular, and Vue have been based on a component model
that favors composition. This allows developers to create reusable
UI components that can be combined to form larger UI elements.
Depending on the team’s setup, it may decide to go for a single UI
framework that allows for easy composition and clear component
boundaries. UI frameworks are no longer exclusive to client-side
rendering. Tools like Next.js demonstrate that the same UI code can
be rendered statically, on demand on the server side, or dynamically
on the client side.

Design systems and component libraries can build the foundation of
frontend composition. Design systems describe look and feel, func‐
tional and perceptual patterns. They provide designers with a frame‐
work to define and create new UI components, and allow developers
to derive optimized and reusable UI components. Alla Kohlmatova
describes the goals of design systems in her book Design Systems. A
component library can be seen as a concrete implementation of a
design system either through basic web technologies—HTML, CSS,
and JavaScript—or based on a UI framework, like React.

Picking React as an implementation basis for a component library
is a reasonable choice: React is a component-based framework that
favors composition, and it has patterns that allow an implementa‐
tion that separates functionality from design. Developers can imple‐
ment elements that work in different contexts (server-side rendered,
statically generated, dynamic on the client side), and there’s a really
good ecosystem supporting developers with extra components that
reduce effort for many complex scenarios.

But the question isn’t how well React works. The more important
question is how easily can React be replaced? If it comes to a rewrite,
a change in frontend technologies, how much effort does it take to
move to the new technology? Do we start from zero, or are there
elements that can be carried over to the implementation?

An example is IBM’s Carbon Design System. For a company as
big as IBM, teams inevitably have different technology choices for
their applications. That’s why the Carbon Design System is first and

Frontend Composability | 29

https://nextjs.org
https://oreil.ly/s4blT
https://carbondesignsystem.com

foremost built upon reusable CSS classes that can then be used
for different frameworks like Angular, Vue, React, Svelte, or even
regular web components. If a new technology needs to be included,
the basic styles and patterns still work. The HTML for those patterns
has been defined, reviewed, and tested for accessibility. The “only”
thing missing is a concrete implementation in said framework.

Using React-specific technologies for CSS like styled components
would ultimately lead to lock-in. Styled components can’t be reused
in Vue, nor Angular, and most likely not in a technology that we
don’t know about yet. Basic CSS and HTML can be reused. The
effort of moving to a new frontend system, or maybe even getting
rid of frameworks entirely, is much lower if we can carry over
as many elements of our design language and implementation as
possible.

Having a simple CSS library with HTML examples also allows for
the creation of static pages for sites that don’t require modularity or
a complex setup, as an example. They still have the same look and
feel as the web application created on top of it.

All three elements, micro-frontends, UI frameworks, and design
systems, can be combined in a single application. For example, the
application performance monitoring company Dynatrace achieved
frontend composability in their AppEngine release by allowing
developers to build self-contained screens through a dedicated
application framework and design system. They use React as a base
technology for their components, providing reusable end-to-end
elements with a design system called Strato. Each “app” is encom‐
passed by an application shell, which serves as a mediator between
screens and provides globals like user information, URLs, etc., form‐
ing a micro-frontends architecture.

Third-Party Services
If we look at the lower parts of Figure 2-1 we see that a lot of
the services used can be served and provided by third parties. The
recruitment portal, search service, and headless CMS can be run
by SaaS offerings, leaving only the blogging software as well as the
build process for the documentation in the hands of the operations
team.

30 | Chapter 2: Developing and Operating Decoupled Applications

https://oreil.ly/3WHUg
https://oreil.ly/fxMJX

Using SaaS offerings for your single-purpose services can come with
a lot of advantages:

• There’s a lower up-front cost, because SaaS is usually subscrip‐•
tion based. Some of them offer free tiers to get your developers
started and only require a professional or enterprise subscrip‐
tion later. Also, you don’t run their servers, which allows you to
bring down operating costs and maintenance.

• Not only can you neglect server maintenance, you also don’t•
need to update the product itself. Not only do you get the latest
and greatest features, but you also get security updates and bug
fixes, which is arguably much more important to you and your
organizations.

• Most SaaS offerings work with JSON-based APIs. In a world of•
decoupled applications, this is the most convenient and easiest
way to integrate new features.

• SaaS offerings are designed to scale. They host multiple tenants•
on their solution already, and are prepared for high traffic and
high load, operational aspects that you mostly don’t want to deal
with.

But SaaS offerings are no panacea. Your organization might have
different requirements regarding privacy and data security than the
service can offer. The service might not reach its SLAs but requires
you to be always connected, and ultimately it may move at a differ‐
ent pace than your organization.

Using third-party SaaS offerings is a topic of trust and costs.
Big organizations pay good money for enterprise deals, but are
ultimately rewarded with high-availability SLAs and continuous
development of the product itself. This investment can unburden
operations teams tremendously, as they don’t need to operate
multiple clusters of differently purposed software, most of them
potentially written in different programming languages and running
on a variety of servers.

If buy-in to third-party services poses risk and uncertainty to you
and your organization, remember a key feature of composable
web architectures: minimizing technology lock-in. You can always
remove an existing service for others, and while this requires some
effort, it’s significantly lower than changing entire systems.

Third-Party Services | 31

If you go for SaaS offerings, evaluate vendors by asking the follow‐
ing questions:

• Does the SaaS offering allow you to export your data to a stor‐•
age service like AWS S3? Maybe even a JSON dump of your
entire content structure? This way you can still read a snapshot
of your web application to keep your system going without
needing a live connection to the third-party service.

• Do SaaS offerings build on open standards and conventions?•
For example, does your identity provider work with OAuth
2.0, so you only need to exchange APIs but not the authentica‐
tion/authorization flow?

• How strong does the connection to the SaaS product need to•
be? Can you cache responses? Does your software fail if availa‐
bility falters, or can you bypass unavailable APIs and still offer
your users some content?

• How does the vendor introduce major updates to their plat‐•
form? Do you have a migration period that allows you to move
to the next version? Do they have some long-term support
(LTS) model of their API? See whether their idea of LTS is
aligned with your sprint cycles.

• How does the vendor respond to security incidents? Check their•
blog to see if there have been breaches and how they communi‐
cated them. Do they have an ISO 27001, PCI-DSS Level 1, or
SOC 1/SSAE-16 certification? Do they regularly check against
OWASP security threats? Do they dedicate a team to control
their cloud infrastructure? Are they GDPR compliant? How do
they handle sensitive data within the company? The vendor
should have this information publicly available. And you can
hold them accountable.

Using third-party services also helps reducing attack vectors and
strengthens security. Your data is not in one place anymore, and at
best it’s also hidden behind a BFF. Mike Gualtieri at Netlify gives an
overview on possible threats and risk and how they can be mitigated
using composable web architectures.

32 | Chapter 2: Developing and Operating Decoupled Applications

https://oreil.ly/G0VGW

Conclusion
With composable web architectures, we can ensure that every part
of our web project can be developed independently, enabling teams
to get features shipped more quickly and with a lot less lead time.
A truly decoupled application allows developers to create more
resilient, failsafe, and sustainable experiences. If one piece of the
system acts up, it doesn’t take the rest of the web application with
it. And as we’ve seen with the example in this chapter, composable
web architectures are perfect for incremental adoption. Fostering
and maintaining a good routing layer and strong URL structure, the
old monolithic website can live alongside the newer web outlets for
ages, and your users most likely won’t notice. Chances are, if you
move to a composable web architecture of decoupled applications,
you will never have another big bang rewrite, but rather change
single elements on your site or sub-branches of your information
architecture piece by piece. A good, robust, and flexible design
system helps with visual consistency, and can be another boost for
your development and design teams alike.

But be aware that composable web architectures also require a
different mindset. They embrace a diverse set of tools and technol‐
ogies, even different programming languages and hosting environ‐
ments. The goal is to get the right tool for the job. To ensure that this
doesn’t lead to endless technology fragmentation, set yourself some
boundaries on what you can reasonably host and monitor. This
also means including third-party software and SaaS solutions, as
they can load a good deal of responsibility off your shoulders; they
might ultimately be a lot cheaper than leaving the development and
operation of said services within your organization. Watch out for
the right SLAs and SLOs, and choose companies that communicate
well, have standards in terms of security, privacy, and availability,
and allow you to have a proper exit strategy. Technology buy-in is
good, technology lock-in must be avoided.

Composable web architectures are the next step in the evolution of
cloud-based microservices. They move a lot of responsibility to the
frontend, with small backend functions that are easy to create and
maintain. With a rich ecosystem of cloud hosting providers, single-
purpose services, and easy-to-deploy backends, frontend developers
have the power to get a full stack application shipped in no time.

Conclusion | 33

About the Author
Stefan Baumgartner is a developer and architect based in Austria.
He is the author of TypeScript in 50 Lessons and TypeScript Cook‐
book, and runs a popular TypeScript and technology blog. In his
spare time, he organizes several meetups and conferences, like the
Rust Linz meetup and the European TypeScript conference. Stefan
enjoys Italian food, Belgian beer, and British vinyl records. He is also
an independent consultant and trainer for Rust and TypeScript at
oida.dev.

https://fettblog.eu
https://tsconf.eu
https://oida.dev

	Cover
	Storyblok
	Copyright
	Table of Contents
	Chapter 1. Composable Web Architectures
	The Four Aspects of a Web Application
	Content Management with Headless and Decentralized Systems
	Decoupling the Application Layer Through Single-Purpose Services
	Frontend Flexibility: Pull Versus Push Deployment
	Conclusion

	Chapter 2. Developing and Operating Decoupled Applications
	Technology Lock-In, Technology Choices, and Rewrites
	Rethinking Backend for Frontend
	Serverless as a Rendering Layer
	Frontend Composability
	Third-Party Services
	Conclusion

	About the Author

